PHYLLOSTOMID BATS
  • Home
  • Book Table of Contents
  • About us

Reproduction and Life Histories

6/12/2020

0 Comments

 

Robert M. R. Barclay and Theodore H. Fleming

The morphological, ecological and behavioral diversity found among the Phyllostomidae might be expected to be associated with variation in reproductive patterns and life history traits. Using data from the primary literature for 71 species, we summarize reproductive and life history variation in this family and test predictions based on life history theory. The expectation for variation is at least partly supported. Monestry, seasonal (bimodal) polyestry, and aseasonal polyestry occur, with larger species, island species or populations, and animalivorous species being most likely to be monestrus. Litter size is universally one, however. As in other bats, phyllostomids have a “slow” life history with late maturity, one offspring per litter, and long lives for their size. Females produce relatively large offspring at birth (mean = 28% of adult mass), although relative size declines with adult mass. Young are dependent on their mother until they are almost full size at the time of weaning. Unfortunately, there is a paucity of data for many other life history traits and this precludes in-depth analyses of patterns and factors associated with variation. Many interesting evolutionary questions remain to be addressed and the variation in other aspects of the family make phyllostomids ideal subjects to test general questions regarding the evolution of reproductive and life history traits of mammals.
Picture
0 Comments



Leave a Reply.

    Meet the editors!

    Theodore H. Fleming, Liliana M. Dávalos, & Marco A. R. Mello

    Use PR20PHYLLO for 20% Off!

    Keywords

    All
    Adaptation
    Adaptive Radiation
    Aerodynamics
    Agribusiness
    Andes
    Animalivorous
    Basal Metabolic Rate
    Bat Conservation
    Bat Ecology
    Bat Pollination
    Behavioral Ecology
    Biodiversity
    BioGeoBEARS
    Biogeography
    Biological Diversity
    Biomechanics
    Body Size
    Brain Evolution
    Brazil
    Canines
    Cave Protection
    Chiropterophily
    Classification
    Climatic Changes
    Coevolution
    Community Ecology
    Community Structure
    Conservation
    Continuous Character Optimization
    Cooperation
    Desmodus
    Diaemus
    Diet
    Dietary Shifts
    Dietary Specialization
    Diet Selection
    Digestive Physiology
    Diphylla
    Dispersal
    Diversification
    Diversity Gradients
    Drift
    Echolocation
    Ecological Networks
    Ecological Niche Modeling
    Ecological Theory Of Adaptive Radiation
    Education
    Elastin
    Emerging Diseases
    Emerging Threats
    Evolutionary Mechanisms
    Excretory Physiology
    Extrinsic Threats
    Female Choice
    Flight
    Foraging Ecology
    Foraging Strategy
    Forest Loss
    Fossils
    Frugivory
    Generalist
    Geological Changes
    Gleaning Insectivory
    Gondwana
    Great American Interchange
    Habitat Loss
    Interaction Networks
    Intestinal Enzymes
    Kidney Structure
    Life History Theory
    Lonchorhina
    Longevity
    Male Competition
    Metabolic Physiology
    Micronycterinae
    Monestrus
    Morphology
    Movement Ecology
    Musculoskeletal
    Nectarivory
    Neotropics
    Network Science
    Neuroanatomy
    New World
    Noctilionoidea
    Ornstein-Uhlenbeck Models
    Oxidative Metabolism
    Past Character Displacement
    Phyletic Trends
    Phyllostomidae
    Phyllostominae
    Phylogenetic Constraints
    Phylogeny
    Polyestrus
    Predator
    Roost Disturbance
    Roosting Behavior
    Roosts
    Sanguinivory
    Sensory
    Sensory Systems
    Sexual Selection
    Size At Birth
    Skin
    Specialization
    Speciation
    Species Description
    Species Interactions
    Sperm Competition
    Taxonomic Discovery
    Trophic Level
    Wing Morphology
    Wings

Powered by Create your own unique website with customizable templates.
  • Home
  • Book Table of Contents
  • About us