PHYLLOSTOMID BATS
  • Home
  • Book Table of Contents
  • About us

Sensory and Cognitive Ecology

6/12/2020

0 Comments

 

Jeneni Thiagavel, Signe Brinkløv, Inga Geipel, and John M. Ratcliffe

Bats (order Chiroptera) exhibit wide-ranging differences in foraging ecology, morphology and behavior that often reflect the demands on their sensory systems. New World leaf-nosed bats (family Phyllostomidae) have a wide spectrum of feeding ecologies and sensory system specializations. The family consists of bats that are primarily nectarivorous (e.g., subfamily Glossophaginae), frugivorous (e.g., Stenodermatinae, Carolliinae), sanguivorous (Desmodontinae), and predatory (Phyllostominae). Phyllostomid brains typically have more balanced visual, olfactory, and auditory regions in relative size compared with other bat families. Within phyllostomid subfamilies, relative brain region volumes reflect feeding ecology and corresponding sensory specializations. For instance, phytophagous phyllostomids have larger visual and olfactory regions relative to predatory species, which in turn have larger auditory centers. This chapter uses this bat family to illustrate the influences that foraging ecology and diet selection have on the evolution of sensory systems and relative brain and brain region volumes. The diversity within this family makes it an excellent model group among bats - and mammals in general - from which to better understand sensory specializations, cognitive development, and brain evolution.
Picture
0 Comments

    Meet the editors!

    Theodore H. Fleming, Liliana M. Dávalos, & Marco A. R. Mello

    Use PR20PHYLLO for 20% Off!

    Keywords

    All
    Adaptation
    Adaptive Radiation
    Aerodynamics
    Agribusiness
    Andes
    Animalivorous
    Basal Metabolic Rate
    Bat Conservation
    Bat Ecology
    Bat Pollination
    Behavioral Ecology
    Biodiversity
    BioGeoBEARS
    Biogeography
    Biological Diversity
    Biomechanics
    Body Size
    Brain Evolution
    Brazil
    Canines
    Cave Protection
    Chiropterophily
    Classification
    Climatic Changes
    Coevolution
    Community Ecology
    Community Structure
    Conservation
    Continuous Character Optimization
    Cooperation
    Desmodus
    Diaemus
    Diet
    Dietary Shifts
    Dietary Specialization
    Diet Selection
    Digestive Physiology
    Diphylla
    Dispersal
    Diversification
    Diversity Gradients
    Drift
    Echolocation
    Ecological Networks
    Ecological Niche Modeling
    Ecological Theory Of Adaptive Radiation
    Education
    Elastin
    Emerging Diseases
    Emerging Threats
    Evolutionary Mechanisms
    Excretory Physiology
    Extrinsic Threats
    Female Choice
    Flight
    Foraging Ecology
    Foraging Strategy
    Forest Loss
    Fossils
    Frugivory
    Generalist
    Geological Changes
    Gleaning Insectivory
    Gondwana
    Great American Interchange
    Habitat Loss
    Interaction Networks
    Intestinal Enzymes
    Kidney Structure
    Life History Theory
    Lonchorhina
    Longevity
    Male Competition
    Metabolic Physiology
    Micronycterinae
    Monestrus
    Morphology
    Movement Ecology
    Musculoskeletal
    Nectarivory
    Neotropics
    Network Science
    Neuroanatomy
    New World
    Noctilionoidea
    Ornstein-Uhlenbeck Models
    Oxidative Metabolism
    Past Character Displacement
    Phyletic Trends
    Phyllostomidae
    Phyllostominae
    Phylogenetic Constraints
    Phylogeny
    Polyestrus
    Predator
    Roost Disturbance
    Roosting Behavior
    Roosts
    Sanguinivory
    Sensory
    Sensory Systems
    Sexual Selection
    Size At Birth
    Skin
    Specialization
    Speciation
    Species Description
    Species Interactions
    Sperm Competition
    Taxonomic Discovery
    Trophic Level
    Wing Morphology
    Wings

Powered by Create your own unique website with customizable templates.
  • Home
  • Book Table of Contents
  • About us